Suppression of E1A-mediated transformation by the p50E4F transcription factor.
نویسندگان
چکیده
The adenovirus E1A gene can act as an oncogene or a tumor suppressor, with the latter effect generally arising from the induction of apoptosis or the repression of genes that provide oncogenic growth stimuli (e.g., HER-2/c-erbB2/neu) or increased metastatic invasiveness (e.g., metalloproteases). In this study, coexpression of E1A and p50E4F, a cellular transcription factor whose DNA binding activity is stimulated by E1A, suppressed colony formation by NIH 3T3 cells and transformation of primary rat embryo fibroblasts but had no observed effect in the absence of E1A. Domains in p50E4F required for stimulation of the adenovirus E4 promoter were required for the suppressive effect, indicating a transcriptional mechanism. In serum-containing media, retroviral expression of p50E4F in E1A13S/ras-transformed NIH 3T3 fibroblasts had little effect on subconfluent cultures but accelerated a decline in viability after the cultures reached confluence. Cell death occurred by both apoptosis and necrosis, with the predominance of each process determined by culture conditions. In serum-free media, p50E4F accelerated E1A-induced apoptosis. The results suggest that p50E4F sensitizes cells to signals or conditions that cause cell death.
منابع مشابه
Mutational analysis of p50E4F suggests that DNA binding activity is mediated through an alternative structure in a zinc finger domain that is regulated by phosphorylation.
p50E4F is a cellular transcription factor whose DNA binding activity is stimulated in a phosphorylation-dependent manner by products of the adenovirus E1A oncogene. Although p50E4F does not contain a bZIP DNA binding motif, it binds a tandemly repeated palindromic sequence in the adenovirus E4 promoter that is recognized by a large number of bZIP proteins, but with much greater stability. Analy...
متن کاملThe CtBP binding domain in the adenovirus E1A protein controls CR1- dependent transactivation
The adenovirus E1A-243R protein has the ability to force a resting cell into uncontrolled proliferation by modulating the activity of key targets in cell cycle control. Most of these regulatory mechanisms are dependent on activities mapping to conserved region 1 (CR1) and the non-conserved N-terminal region of E1A. We have previously shown that CR1 functions as a very patent transactivator when...
متن کاملPotent Anti-Inflammatory Activity of Tetramethylpyrazine Is Mediated through Suppression of NF-k
The purpose of the current study was to evaluate the anti-inflammatory activity of tetramethlpyrazine on oxazolone-induced colitis mice. Spleen mononuclear cells (SMC), lamina propria mononuclear cells (LPMC) and peripheral blood mononuclear cells (PBMC) were isolated from oxazolone-induced colitis and normal mice. The colitis cells treated by oxazolone were randomly divided into model, low dos...
متن کاملPotent Anti-Inflammatory Activity of Tetramethylpyrazine Is Mediated through Suppression of NF-k
The purpose of the current study was to evaluate the anti-inflammatory activity of tetramethlpyrazine on oxazolone-induced colitis mice. Spleen mononuclear cells (SMC), lamina propria mononuclear cells (LPMC) and peripheral blood mononuclear cells (PBMC) were isolated from oxazolone-induced colitis and normal mice. The colitis cells treated by oxazolone were randomly divided into model, low dos...
متن کاملAdenovirus type 5 E1A and E6 proteins of low-risk cutaneous beta-human papillomaviruses suppress cell transformation through interaction with FOXK1/K2 transcription factors.
The adenovirus (Adv) oncoprotein E1A stimulates cell proliferation and inhibits differentiation. These activities are primarily linked to the N-terminal region (exon 1) of E1A, which interacts with multiple cellular protein complexes. The C terminus (exon 2) of E1A antagonizes these processes, mediated in part through interaction with C-terminal binding proteins 1 and 2 (CtBP1/2). To identify a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 19 7 شماره
صفحات -
تاریخ انتشار 1999